# ################################################################# # #### LOAD LIBRARY AND DEFINE CORE SETTINGS #### # ################################################################# # ### Clear memory rm(list = ls()) ### Load Apollo library library(apollo) ### Initialise code apollo_initialise() ### Set core controls apollo_control = list( modelName = "CNL", modelDescr = "CNL model with socio-demographics on mode choice SP data", indivID = "ID", outputDirectory = "output" ) # ################################################################# # #### LOAD DATA AND APPLY ANY TRANSFORMATIONS #### # ################################################################# # ### Loading data from package ### if data is to be loaded from a file (e.g. called data.csv), ### the code would be: database = read.csv("data.csv",header=TRUE) database = apollo_modeChoiceData ### for data dictionary, use ?apollo_modeChoiceData ### Use only SP data database = subset(database,database$SP==1) ### Create new variable with average income database$mean_income = mean(database$income) # ################################################################# # #### DEFINE MODEL PARAMETERS #### # ################################################################# # ### Vector of parameters, including any that are kept fixed in estimation apollo_beta=c(asc_car = 0, asc_bus = 0, asc_air = 0, asc_rail = 0, asc_bus_shift_female = 0, asc_air_shift_female = 0, asc_rail_shift_female = 0, b_tt_car = 0, b_tt_bus = 0, b_tt_air = 0, b_tt_rail = 0, b_tt_shift_business = 0, b_access = 0, b_cost = 0, b_cost_shift_business = 0, cost_income_elast = 0, b_no_frills = 0, b_wifi = 0, b_food = 0, lambda_fastPT = 1, lambda_groundPT = 1, alpha_rail_fastPT = 0.5) ### Vector with names (in quotes) of parameters to be kept fixed at their starting value in apollo_beta, use apollo_beta_fixed = c() if none apollo_fixed = c("asc_car","b_no_frills") ### Read in starting values for at least some parameters from existing model output file apollo_beta=apollo_readBeta(apollo_beta,apollo_fixed,"../1 MNL/output/MNL_SP_covariates",overwriteFixed=FALSE) # ################################################################# # #### GROUP AND VALIDATE INPUTS #### # ################################################################# # apollo_inputs = apollo_validateInputs() # ################################################################# # #### DEFINE MODEL AND LIKELIHOOD FUNCTION #### # ################################################################# # apollo_probabilities=function(apollo_beta, apollo_inputs, functionality="estimate"){ ### Attach inputs and detach after function exit apollo_attach(apollo_beta, apollo_inputs) on.exit(apollo_detach(apollo_beta, apollo_inputs)) ### Create list of probabilities P P = list() ### Create alternative specific constants and coefficients using interactions with socio-demographics asc_bus_value = asc_bus + asc_bus_shift_female * female asc_air_value = asc_air + asc_air_shift_female * female asc_rail_value = asc_rail + asc_rail_shift_female * female b_tt_car_value = b_tt_car + b_tt_shift_business * business b_tt_bus_value = b_tt_bus + b_tt_shift_business * business b_tt_air_value = b_tt_air + b_tt_shift_business * business b_tt_rail_value = b_tt_rail + b_tt_shift_business * business b_cost_value = ( b_cost + b_cost_shift_business * business ) * ( income / mean_income ) ^ cost_income_elast ### List of utilities: these must use the same names as in cnl_settings, order is irrelevant V = list() V[["car"]] = asc_car + b_tt_car_value * time_car + b_cost_value * cost_car V[["bus"]] = asc_bus_value + b_tt_bus_value * time_bus + b_access * access_bus + b_cost_value * cost_bus V[["air"]] = asc_air_value + b_tt_air_value * time_air + b_access * access_air + b_cost_value * cost_air + b_no_frills * ( service_air == 1 ) + b_wifi * ( service_air == 2 ) + b_food * ( service_air == 3 ) V[["rail"]] = asc_rail_value + b_tt_rail_value * time_rail + b_access * access_rail + b_cost_value * cost_rail + b_no_frills * ( service_rail == 1 ) + b_wifi * ( service_rail == 2 ) + b_food * ( service_rail == 3 ) ### Specify nests for CNL model cnlNests = list(car=1,groundPT=lambda_groundPT,fastPT=lambda_fastPT) ### Specify nest allocation parameters for alternatives included in multiple nests alpha_rail_groundPT = 1 - alpha_rail_fastPT ### Specify tree structure, showing membership in nests (one row per nest, one column per alternative) cnlStructure = matrix(0, nrow=length(cnlNests), ncol=length(V)) cnlStructure[1,] = c( 1, 0, 0, 0 ) # car cnlStructure[2,] = c( 0, 1, 0, alpha_rail_groundPT) # groundPT cnlStructure[3,] = c( 0, 0, 1, alpha_rail_fastPT ) # fastPT ### Define settings for CNL model cnl_settings <- list( alternatives = c(car=1, bus=2, air=3, rail=4), avail = list(car=av_car, bus=av_bus, air=av_air, rail=av_rail), choiceVar = choice, utilities = V, cnlNests = cnlNests, cnlStructure = cnlStructure ) ### Compute probabilities using CNL model P[["model"]] = apollo_cnl(cnl_settings, functionality) ### Take product across observation for same individual P = apollo_panelProd(P, apollo_inputs, functionality) ### Prepare and return outputs of function P = apollo_prepareProb(P, apollo_inputs, functionality) return(P) } # ################################################################# # #### MODEL ESTIMATION #### # ################################################################# # model = apollo_estimate(apollo_beta, apollo_fixed, apollo_probabilities, apollo_inputs) # ################################################################# # #### MODEL OUTPUTS #### # ################################################################# # # ----------------------------------------------------------------- # #---- FORMATTED OUTPUT (TO SCREEN) ---- # ----------------------------------------------------------------- # apollo_modelOutput(model, modelOutput_settings=list(printT1=TRUE) ) # ----------------------------------------------------------------- # #---- FORMATTED OUTPUT (TO FILE, using model name) ---- # ----------------------------------------------------------------- # apollo_saveOutput(model, saveOutput_settings=list(printT1=TRUE) ) # ################################################################# # ##### POST-PROCESSING #### # ################################################################# # ### Print outputs of additional diagnostics to new output file (remember to close file writing when complete) apollo_sink() # ----------------------------------------------------------------- # #---- LR tests for nested models ---- # ----------------------------------------------------------------- # apollo_lrTest("../1 MNL/output/MNL_SP_covariates", model) apollo_lrTest("NL_two_levels",model) # ----------------------------------------------------------------- # #---- Ben-Akiva & Swait tests for non-nested models ---- # ----------------------------------------------------------------- # apollo_basTest("NL_three_levels",model) # ----------------------------------------------------------------- # #---- COMBINED RESULTS OF GEV MODELS ---- # ----------------------------------------------------------------- # apollo_combineResults(combineResults_settings = list(modelNames=c("../1 MNL/output/MNL_RP", "../1 MNL/output/MNL_SP", "../1 MNL/output/MNL_SP_covariates", "NL_two_levels", "NL_three_levels", "CNL"))) # ----------------------------------------------------------------- # #---- switch off writing to file ---- # ----------------------------------------------------------------- # apollo_sink()